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Al~a-act--The note considers steady laminar boundary layer free convection from plane arbitrarily 
shaped surfaces for quasi-two-dimensional conditions. An attempt is made to represent the effect of 
surface geometry using a concept of "geometrical effectiveness". Illustrative results are obtained for 

plane surfaces and for bodies having a surface composed of plane sides. 

NOMENCLATURE 
X, distance upwards from leading edge; 
y, distance normally outwards from sur- 

face; 
z, distance across surface; 
X, length of surface in direction of flow; 
Z, width of surface; 
A, arbitrary function of z; 
f ,  component of "g"  in direction of flow; 
fl, cubical coefficient of expansion; 
v, kinematic viscosity; 
K, thermal conductivity; 
q, heat flux density; 
T,~,  temperature; 
Nu, Nusselt number; 
G, Grashofnumber; 
Pr, Prandtl number; 
Ra, Rayleigh number; 
~ , f ,  stream function; 
• /, similarity variable. 

Subscripts 
0, surface; 
cO, infinity; 
x, X length. 

INTRODUCTION 
IT IS easily shown that if lateral fluid velocities 
are sufficiently small the equations governing 

their two-dimensional form, thus permitting a 
quasi-two-dimensional treatment of certain prob- 
lems [1]. This note is an application of the 
quasi-two-dimensional treatment to heated plane 
surfaces of arbitrary shape. 

Because of the nature of the treatment, we 
have at our disposal all previous two-dimensional 
solutions but for simplicity we will restrict our- 
selves to similarity flows [2-4]. For any particular 
similarity solution, the general heat-transfer 
relation for a strip of unit width in the z direction 
(see Fig. 1) may be written as, 

Nux. ------ c Ra~/4 (1) 

where the coefficient c depends upon the Prandtl 
number and the form of the variation of surface 
temperature, which is given, in many important 
circumstances, by, 

(To -- T~o)x = A(z) x "a (see Appendix). 

The average heat-transfer rate for a strip of  
unit width is easily found from (1) as, 

,~o = ck \ ~ / 

Hence the average heat-flux density for the 
entire arbitrary surface is given by 

steady three-dimensional laminar boundary layer (~0)av ----- So z 4o X dz/plate area 
free convection from a plane surface reduce to 

= c k  (fl_fr f / 4  Sz xa/4 [A(z) Xn]5/4 dz 
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which, it should be noted, depends upon the 
surface geometry indirectly only: that is, the 
determining factor is the shape of the curve of 
surface length (X) plotted against distance across 
the surface. Figure 1 shows the actual (broken 
line) and equivalent (X versus z) forms of an 
arbitrarily shaped surface. 

X 

ACTUAL SHAPE 

/ 

z z 
FIG. 1. Actual and equivalent shapes. 

RELATIVE GEOMETRICAL EFFECTIVENESS 

For a square surface (side L) having its lower 
edge perpendicular to the generating body force 
and having the same inclination (i.e., the same 
value o f f )  as the arbitrary surface, equation (2) 
becomes, 

( ( l o ) . 4 v  = ck \v,c / .[z o X dz 

We m a y  now define the "geometrical effectiv 
ness", E u, as the average heat-flux density of the 
arbitrarily shaped surface expressed as a fraction 
of the average heat flux density of a square of the 
same area. That is, we have, 

fZ 0 X3/4 [A(z) Xn]5/4 dz  
ca = 1.,3/4 + 5n/4 yL 0 A(z)  5/4 dg  (3) 

which also depends upon the equivalent rather 
than the actual surface shape. 

There are actually two factors which govern 
the geometrical effectiveness; the surface shape 
and the surface orientation or "skew": skew is 
preferred to "inclination" which already has an 

accepted meaning, i.e. a surface not lying 
parallel to the generating body force. 

S O M E  EXAMPLES 

(a) Vertical plates 
Obviously, the possible number of combina- 

tions of geometries, orientations and tempera- 
ture distributions is enormous. Only two illus- 
trative examples will be given here--the circle 
and the rectangle, both at uniform temperature. 
Before giving these, however, it is instructive to 
determine the form of cg if A(z) is a constant 
and n = 1/5. From (3) we find that cg does not 
depend upon geometry at all, a fact which could 
easily have been anticipated since this condition 
corresponds to a uniformly heated plate, for 
which the geometry is unimportant. 

For an isothermal circular plate (radius R) we 
have 

2 rR 93/4 ( 2 Z2)3/S j o -  ,R -- dz 
c a ~ 7r7/8 R7/4 

= 1.03, 

which, as expected, is not a function of skew. 
For an isothermal rectangle of the proportions 

shown in Fig. 2, the variation of cg with skew 
angle 8 is given by 

(b)l/8 [b/7a . sin O -k cosO] 
Cg ~ COS 3/4 0 ' 

0 ~ 0 ~ 2  .... arctan 

"-- . .  , 
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FIG. 2. Geometrical effectiveness of  a skewed isothermal 
rectangle. 
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and 

(~)l/S [a/7b . cos O + sin0] 
ea = sin a/4 0 

arctan a ~< 0 ~< 2]" 

This is shown plotted in the figure. 

(b) Solids 
Many solids have surfaces which are formed 

by plane elements. Some of these are amenable 
to the simple treatment of this note. If  the 
inclination (to the direction of the generating 
body force) of each surface element is small, and 
the flow over one element does not substantially 
affect flow over the next, then the treatment given 
here should apply with reasonable accuracy. As 
an example, consider the tapering surface (only) 
of the m-sided pyramid (base side am) shown in 
Fig. 3. Rearranging (2), for an isothermal surface, 
as, 

(4o)av fZo Xa/4 dz 

ck \~1 
we see that the right-hand side is a property of 
geometry alone. Considering pyramids of equal 

I~" ca 

1.20 I 
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1.00 

0.90 

0.80 

O. 70 

\ 
\ 

volume and equal base area (taken equal to 
a~ for convenience) we find that, 

7 (q0)AV. [flf \1/4~-a~4/4 [eOtm/m + (ba4)2]-1/s 

8 ck l l~ /  
which is shown plotted in Fig. 3. It is interesting 
to note that as m --> oo, 

cot =/m 1 
m 

and hence we conclude that, 

(Nu=)eone = ~ (Nux)nat plato 

x being measured along the surface in the 
direction ofttow in each case. The figure indicates 
that except for very shallow pyramids the heat 
transferred is almost independent of m. 

CONCLUSIONS 

Using a simple quasi-two-dimensional treat- 
ment it has been shown that the heat transferred 
in laminar free convection from an arbitrarily 
shaped plane surface depends upon an equivalent 
rather than the actual surface shape. The con- 
cept of a "geometrical effectiveness" enables a 
comparison to be made between the arbitrary 
surface and a square of the same area. 

b 

0.60 

0.50 
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FIG. 3. Average heat transfer from an m-sided pyramid. 
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The analysis may be extended to solid bodies 
if the body sm face is composed of plane elements 
arranged such that the flow over each element is 
independent of the flow over the rest. 
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APPENDIX 

Permissible Longitudinal Surface Temperature 
Distributions 

Seeking two-dimensional similarity solutions 
we may put 

¢ (x, y) - - f@) ~ (x) 

n = y  ~(x) 

6 (x, y) 
¢ - -  G o  ( x )  " 

Substituting these into the boundary-layer 
forms of the governing equations we obtain [4] 

f ' "  -I- a l f " f - -  (az -}- al) (f')2 + aa ¢ = 0 

"tt 
fi~ d? -1- a l f ¢ '  - -  a 4 f ' ¢  ~- 0 

where the coefficients a are constants defined by 

1 d~ 
e l  = ~ d-~ (4a) 

d~ (4b) 
~ = ~2 dx  

(io 
oa == (~:~ (4c) 

dGo 
~4 G0~ d r "  (4d) 

Equations (4a) and (4c) taken together give 

~4/3 == al  \ a ~ /  dx  -t- cons t .  

or, putting the arbitrary constant equal to zero, 

where 
I /, 

J(x)  al 
\ a3/ 

Equation (4c) may now be written as 

1 i '3]~ '4dJ  
== al ~4j] dx 

which, when combined with (5) and (4b) gives 

7__2-1 [d J~" d~J 
7 \dx]  = J d x  ~ (6) 

where 

Y -- 3 (al  - -  a2)" 

Permissible solutions to (6) are 

7 -- 1 @ 7; J = (/~1 X -~- t 2 ) 7  (7a) 

7 - -  I = 7 ;  J : ~ o e  ~,z (7b) 

where ,~, tz, oJ and ¢ are all arbitrary. 
The permissible forms of Go which result from 

(7) are the same as those given in [4], with one 
important distinction. From (7) it can be seen 
that the exponential distribution is not really 
a separate form, but merely the asymptote of 
(7a) as 7 -+ oo. In general then, the permissible 
surface temperature distribution is given by 

Go(x) ~ (/~1 x -~- ~2) 3(7-1), 

If  the leading edge takes the temperature of  the 
fluid at infinity, then G0(0)=  0 and hence 
,~2 --= 0, i.e. 

Go(x) oc xa(~ -a) 

which is also a valid form if the surface is iso- 
thermal, i.e. 7 = 1. 
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R&um6---La note consid6re la convection fibre stationnaire avec une couche limite laminaire /t 
partir de surfaces planes de forme arbitraire pour des conditions presque bidimensionneUes. On fair 
une hypoth6se pour repr&enter l'effet de la g6om6trie de la surface en utilisant un concept d' "efli- 
cacit6 g6om6trique'. 

On obtient des r&ultats explicatifs pour des surfaces planes et pour des corps ayant une surface 
compos6e de faces planes. 

Zusammenfassung--Es wird die stationiire freie Konvektion mit laminarer Grenzschicht an ebenen 
F l~hen  beliebiger Gestalt fiir quasi zweidimensionale Verhiilmisse betrachtet. Um den Einfluss der 
Oberfl~chengeometrie wiederzugeben, wurde ein "geometrischer Wirkungsgrad" angenommen. 
Anschauliche Ergebnisse liessen sich ffir ebene Flachen und fiir K6rper, deren Oberfl~hen eben 

sind, erhalten. 

AH~OTa]~lc~--PaccMaTpHBaeTcA CBO60~HaA ~OHBeKRHA B CTaU~IoHapHoM RBaBH~ByXMepHOM 
JIaMHHapHOM HoFpaHHqHOM c~oe ~JIR HJIOCHHX HoBepXHOCTei~ HpOHSBOJIt,HOYi ~OpMh[. C~e~aHa 
non~TRa npe~CTaB~Tb a ~ e ~ T  reoMeTp~H HoBepXHOCTH C noMonlbm HCnOXibaOBaHH~ nOH~THU 
,reose~pHqecHol~ a~eKT~BHOCTH*. IIoJIyqeH~I HarJm~H~e peay~H,TaT~ ~IJI~[ nJIocHx4x nosepx- 

HOeTei~ H ~JI~ TeJI, noBepxnoeT~ ROTOph-x COCTaBJ[eHa H8 nJiocHRx CTOpOH. 


